

Trade Fragmentation, Inflationary Pressures and Monetary Policy

Ludovica Ambrosino, Jenny Chan, Silvana Tenreyro

Discussion by Kai Arvai

Banque de France¹

November, 2024

Kai Arvai (BdF) November, 2024 1/8

¹The views of the author do not necessarily reflect the ones of the Banque de France

Motivation and Contribution

How does trade fragmentation affect inflationary pressures?

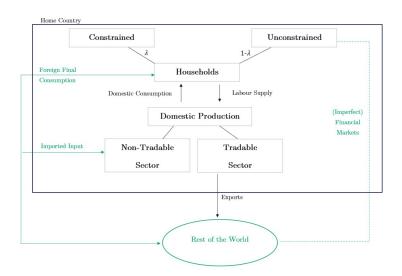
- Common narrative: Globalization helped to keep inflation low
- If this reverses: More inflation possible

Kai Arvai (BdF) November, 2024 2/8

Motivation and Contribution

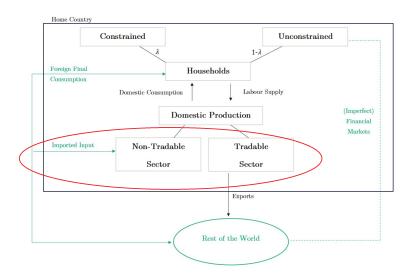
How does trade fragmentation affect inflationary pressures?

- Common narrative: Globalization helped to keep inflation low
- If this reverses: More inflation possible

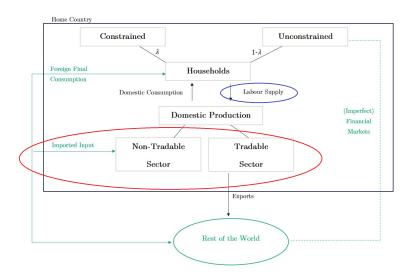

This paper: This narrative is not necessarily true

- Supply and Demand effects of fragmentation important
- HANK model with open economy dimension
- Impact on inflation depends on the specifics

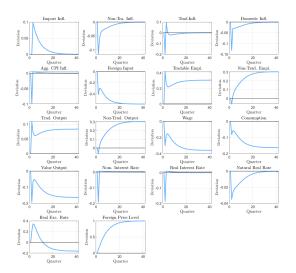
→ Challenges dominant views of policymakers on inflationary impact


Kai Arvai (BdF) November, 2024

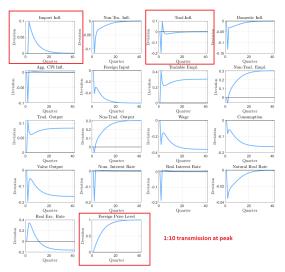
Model Overview


Kai Arvai (BdF) November, 2024 3/8

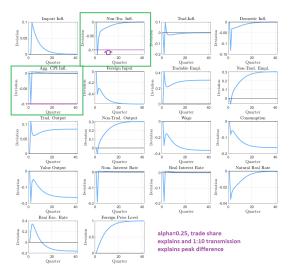
Model Overview


Kai Arvai (BdF) November, 2024

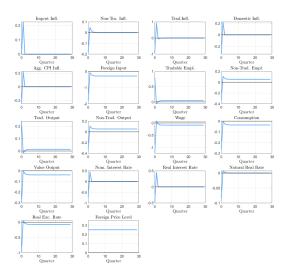
Model Overview


Kai Arvai (BdF) November, 2024 3/8

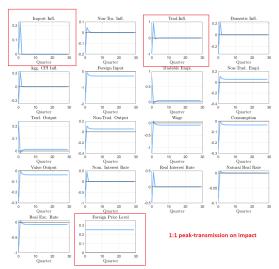
Gradual increase in foreign prices: Not inflationary, but deflationary


Kai Arvai (BdF) November, 2024 4/8

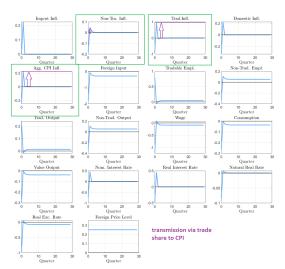
Gradual increase in foreign prices: Not inflationary, but deflationary


Kai Arvai (BdF) November, 2024 4/8

Gradual increase in foreign prices: Not inflationary, but deflationary


Kai Arvai (BdF) November, 2024 4/8

Front-loaded increase in foreign prices: initial inflation


Kai Arvai (BdF) November, 2024 5/8

Front-loaded increase in foreign prices: initial inflation

Kai Arvai (BdF) November, 2024 5/8

Front-loaded increase in foreign prices: initial inflation

Kai Arvai (BdF) November, 2024 5/8

Comment: Non-traded, Intermediates, Traded and TFP

Production functions:

$$Y_{N,t}(i) = A_{N,t} M_{F,t}^{\kappa}(i) N_{N,t}^{1-\kappa}(i), \quad Y_{N,t} \equiv \left(\int_0^1 Y_{N,t}(i)^{\frac{\epsilon-1}{\epsilon}} di \right)^{\frac{\epsilon}{\epsilon-1}}$$

ullet Intermediates only in N, elasticty of substitution 1 and M-share κ

Kai Arvai (BdF) November, 2024 6/8

Comment: Non-traded, Intermediates, Traded and TFP

Production functions:

$$Y_{N,t}(i) = A_{N,t} M_{F,t}^{\kappa}(i) N_{N,t}^{1-\kappa}(i), \quad Y_{N,t} \equiv \left(\int_0^1 Y_{N,t}(i)^{\frac{\epsilon-1}{\epsilon}} di \right)^{\frac{\epsilon}{\epsilon-1}}$$

ullet Intermediates only in N, elasticty of substitution 1 and M-share κ

$$MC_{N,t}(i) = rac{W_t^{1-\kappa}P_{F,t}^{\kappa}}{A_t} \left[\left(rac{\kappa}{(1-\kappa)}
ight)^{1-\kappa} + \left(rac{(1-\kappa)}{\kappa}
ight)^{\kappa}
ight]$$

 \rightarrow Where is exchange rate? Rise in P_{Ft} includes exchange rate?

Kai Arvai (BdF) November, 2024 6/8

Comment: Non-traded, Intermediates, Traded and TFP

Production functions:

$$Y_{N,t}(i) = A_{N,t} M_{F,t}^{\kappa}(i) N_{N,t}^{1-\kappa}(i), \quad Y_{N,t} \equiv \left(\int_0^1 Y_{N,t}(i)^{\frac{\epsilon-1}{\epsilon}} di \right)^{\frac{\epsilon}{\epsilon-1}}$$

ullet Intermediates only in N, elasticty of substitution 1 and M-share κ

$$MC_{N,t}(i) = \frac{W_t^{1-\kappa}P_{F,t}^{\kappa}}{A_t} \left[\left(\frac{\kappa}{(1-\kappa)} \right)^{1-\kappa} + \left(\frac{(1-\kappa)}{\kappa} \right)^{\kappa} \right]$$

 \rightarrow Where is exchange rate? Rise in P_{Ft} includes exchange rate? Contrast with specification of Traded goods:

$$Y_{T,t} = A_{T,t} N_{T,t}^{1-\zeta}$$

- Perhaps too simplistic? Is there a price increase for these goods that lower foreign demand?
- Productivity $A_{T,t}$ in TFP scenario (not $A_{N,t}$)

Kai Arvai (BdF)

Comment: Labor markets

Consumer Focs and aggregator determines reaction of labor markets to shocks:

$$\begin{split} N_t^{\phi} &= \left(\frac{\epsilon - 1}{\epsilon} \frac{A_{N,t} p_{N,t}}{\Gamma} p_{F,t}^{-\kappa}\right)^{\frac{1}{1-\kappa}} C_t^{-\sigma}, \\ C_t &\equiv \left[(1 - \alpha)^{\frac{1}{\eta}} C_{H,t}^{\frac{\eta - 1}{\eta}} + \alpha^{\frac{1}{\eta}} C_{F,t}^{\frac{\eta - 1}{\eta}} \right]^{\frac{\eta}{\eta - 1}} \\ C_{H,t} &= \left[(1 - \gamma)^{\frac{1}{\nu}} C_{N,t}^{\frac{\nu - 1}{\nu}} + \gamma^{\frac{1}{\nu}} C_{T,t}^{\frac{\nu - 1}{\nu}} \right]^{\frac{\nu - 1}{\nu}} \end{split}$$

Many elasticities required to be just right:

- Frisch Elasticity ψ : are you willing to adjust working hours?
- Intertemporal elasticity σ : are you willing to save?
- Trade elasticities η , ν : Can you substitute goods ?

Kai Arvai (BdF) November, 2024

Calibration

Parameter	Benchmark Model	Parameter	Benchmark Model
β	0.99	χ	0.00001
α	0.25	ϕ_{π}	2
ϵ	6	$\phi_{\mathcal{Y}}$	0
η	1	$ ho_{\scriptscriptstyle S}$	0.9
ν	1	ξ	28.003
λ	0.3	ζ	0.7
γ	0.2	φ	1
σ	4	κ	≈ 0
	·	<u> </u>	

If you want to emphasize the <u>labor market channel</u> you need robustness checks, at least in the Appendix.

 \rightarrow just footnotes are not enough as quantitative magnitude could differ quite a bit

Kai Arvai (BdF) November, 2024