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1 Introduction

In the aftermath of the Great Recession the risk-free interest rates sharply dropped. This

fall adds up to a secular downward trend in the interest rates that begun in the ’80s.

While the latter has been attributed to slow moving trends for example in demographics

or inequality, the same factors hardly explain this sudden drop in the interest rates.

Instead, plausible causes of this sharp decline can be a decrease in productivity that

occurred during the crisis or a change in the agents’ beliefs.

The aim of this paper is to study the role of agent’s beliefs and pessimism in explaining

the drop in interest rates during the Great Recession. In particular, we consider that the

agents are uncertain about the nature of the shocks that hit the economy: was the decline

in GDP persistent but temporary, or permanent? This question has been extensively

discussed and the hypothesis of ”secular stagnation” arose in the economic debate (Sum-

mers, 2014; Gordon, 2012). Our conjecture is that the attribution of a positive probability

to the scenario of secular stagnation acts per se as a force that induces a more cautious

behavior, that is to consume less and save more, with the consequence of lowering the

natural interest rate. The aim of this paper is to verify if this conjecture is empirically

relevant, and to quantify the role of beliefs and pessimism in explaining the decline of

the interest rates. At the current stage of the project we developed an empirical strategy

that serves our purpose: this is what we describe below.

First, we assume that the agents in the economy have limited information on the evo-

lution of productivity. The dynamics of productivity are described by the sum of two
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components, a long run trend and a short run process that captures temporary fluctua-

tions around the trend. The agents can observe productivity but they cannot distinguish

its determinants that are latent processes hit by stochastic disturbances. Shocks to pro-

ductivity, which are also unobservables, can be of two kinds: permanent or transitory.

This hypothesis introduces an extra layer of uncertainty: the agents do not know the

probability distribution of future productivity because it depends on the unobserved state

of the economy. They consider, then, a set of distributions on future technology. We re-

fer to this situation as ambiguity. To understand how ambiguity can affect the decision

making process, consider, for example, the case of a temporary shock that makes the real-

ization of productivity different from what the agents expected. Given their information,

the agents can also attribute this to a permanent shock or to a wrong assessment on the

latent components of productivity. All these three possibilities (and not just that of a

temporary shock) are weighted in the consumption/saving decisions.

Ambiguity relaxes the hypothesis that the probability distribution of the future state

of the economy is known, as it is often assumed in macroeconomic models. It can be

a characteristic of many aspect of the economy. For example Tristani (2009) assumes

ambiguity on both future productivity and monetary policy, showing that the latter can

affect the natural interest rate; Masolo and Monti (2017) also consider ambiguity on

monetary policy, showing the effects on the long run component of inflation; Ilut et al.

(2016) study how firms’ ambiguity on their competitive environment affect their pricing

decisions. In this paper, as in Ilut and Schneider (2014), we assume ambiguity only on

productivity: we think this is the relevant channel for the mechanism we want to study.

Consider again the example of a temporary shock to technology: since the agents do not

distinguish the nature of the shock, they will revise their expected permanent income

which is the relevant quantity for their consumption/saving decisions. Blanchard et al.

(2017), who also put forward the arguments that a lower assessment on permanent income

can explain the weaker demand after the Great recession, focus on revisions in long run

forecasts of potential.

We want to verify how much the spectrum of a reduction in permanent income can

be responsible for the persistently low interest rates after the crisis. In this mechanism

the role of pessimism is key: the higher the agents’ pessimism, the greater the probability

they attribute to the worst scenario of a permanent reduction in their future income. In

order to model pessimism we assume that there is a representative agent endowed with

recursive smooth ambiguity preferences (Klibanoff et al., 2005, 2009). If the agent is averse

toward ambiguity she dislikes this additional source of uncertainty and consequently, when

she takes decisions, she acts as if the probability distribution on future productivity is

biased towards lower values. In this way she takes precautionary decisions against worse

outcomes. We refer to this bias as pessimism.1

1The smooth ambiguity preferences allow us to model also the opposite case of optimism, that materi-

2



One of the main reasons why we chose the smooth ambiguity approach to model

preferences is the flexibility it offers in treating pessimism. It allows to distinguish ambi-

guity (a characteristic of the decision maker’s subjective beliefs) and ambiguity attitude

(a characteristic of the decision maker’s tastes). An increase in pessimism can be due

to an increase in ambiguity aversion or, for given ambiguity aversion, to an increase in

ambiguity. In order to model a potential time variation in pessimism we will treat both

ambiguity and ambiguity aversion as time varying.

Our main question is empirical, and in order to assess the role of beliefs and pessimism

in the aftermath of the Great Recession we need to confront the model with the data. Es-

timating the complete non-linear model would require a computational effort that is above

our possibilities. Then, we obtain an approximation of the solution designing a pertur-

bation technique for models with smooth ambiguity preferences, following the approach

of Borovička and Hansen (2014a), Borovička and Hansen (2014b) and Bhandari et al.

(2017). This approximation technique, based on series expansions, allows to keep some

non-linearities induced by ambiguity-aversion. With respect to Borovička and Hansen

(2014a), Borovička and Hansen (2014b) and Bhandari et al. (2017) we face an additional

challenge: we also need to approximate the evolution of the agent’s beliefs on the latent

processes.

We show that a first order approximation can capture the effects of an increase in

pessimism, however it cannot disentangle the different contributions of the two sources

of pessimism we described above. Then, we develop the approximation up to the second

order to capture the additional precautionary motives related to an increase in ambiguity

and to distinguish it from an increase in ambiguity-aversion. Finally, we describe an

econometric strategy based on particle filtering to approximate the likelihood of non-

linear models of the kind presented in this paper.

In the rest of this draft we describe all the steps listed above through a simple example

that highlights the core mechanism.

2 Environment

2.1 The process for technology

We assume an exogenous technology process described by the following Dynamic Linear

Model:

alizes when the agent loves ambiguity. In the analysis we allow for both possibilities.
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ln(At) = lt + ft (1)

lt = lt−1 + γt

γt = (1− ργ) γ̄ + ργγt−1 + σγεγt

ft = ρfft−1 + σfεft

where the technology At is decomposed into a trend component lt and a stationary

component ft. We assume that |ργ| < 1, |ρf | < 1 , and the i.i.d. shocks (εγt, εft)
′ ∼

N(0, I). The logarithm of technology can be hit by two types of shocks: εγt impacts the

growth rate of the trend component γt and it has a permanent effect to the level; εft has

a persistent but transitory effect, making technology to diverge only temporarily from its

trend. The agents observe ln(At) but they do not observe neither its components nor the

realization of εγt and εft. Parameters are known.

This assumption introduces an additional source of uncertainty. The distribution of

technology tomorrow (and its growth rate) given information today is not known because

its expected value depends on unobserved components. The agents take into account this

additional source of uncertainty when they take decisions and in particular they consider

a set of distributions on the future level of technology: the agents face ambiguity.

2.2 The preferences

We assume that a representative agent is endowed with recursive smooth ambiguity pref-

erences (Klibanoff et al., 2005, 2009). Let’s consider a simple example that describes the

core mechanism: at each time t the representative agent receives At as endowment and

chooses how much to consume and how much to invest in a risk-free bond. Her budget

constraint is the following:

Ct +Bt+1 = At +RtBt

where Ct denotes consumption and Bt is the risk-free bond in zero net supply associated

with the interest rate Rt. The value function recursion is defined as follows:

Vst(Bt, µt) = max
{Ct,Bt+1}

u(Ct) + βφ−1
(
Eµtφ

(
EπθtV(st,At+1)(Bt+1, µt+1)

))
where st = {A0, ..., At} is the history of observations up to time t and θt is the vector

of unobserved components in system(1). πθt denotes the distribution of At+1 given st and

θt, and µt is the Bayesian posterior of θt. Given that system (1) is linear and Gaussian

and we assume a Gaussian prior over θt, µt is a Normal distribution with mean mt and

variance Qt. The inner expectation Eπθt is computed taking into account all the possible
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realizations of shocks given θt. However, θt is not known and the agent needs to compute

a second expectation Eµt over all the possible values of the latent vector. These two

integrals do not reduce thanks to the presence of the increasing function φ, that denotes

the agent’s ambiguity attitude. We assume:

φ(z, αt) = − 1

αt
exp {−αtz}

where αt is a time-varying coefficient of ambiguity attitude. When αt > 0, the function

φ is concave and the agent gives higher weight to lower expected continuation values. In

this case the agent is defined as ambiguity averse. Conversely, when αt < 0, the agent is

defined ambiguity loving. In case of αt = 0, the agent is ambiguity neutral and her choices

are observationally equivalent to that of a Bayesian decision maker. Note how the smooth

ambiguity preferences allow to distinguish ambiguity and ambiguity-aversion. The former

is a characteristic of the decision maker’s subjective beliefs, and in this setting higher

ambiguity corresponds to higher variance of the posterior distribution on the unobserved

vector: we labelled it Qt. Ambiguity attitude, on the other hand, is a characteristic of the

decision maker’s tastes and it tells how much the agent dislikes (or like) the uncertainty

over θt.

In equilibrium, the gross risk-free interest rate is as follows:

R−1
t+1 = Eµt

[
ξtEπθt

(
β
At
At+1

)]
(2)

where

ξt ≡
exp {−αtEθtVt+1}

Eµt [exp {−αtEθtVt+1}]
(3)

With respect to the standard case of complete information, the Euler equation (2) has

two differences: first, the growth rate of technology depends on the latent vector θt which is

unknown. Then, the agent forms her beliefs conditional on the observed technology using

the Bayes rule. Second, when taking decisions, she acts as if her posterior distribution is

distorted through the presence of ξt. The latter is in fact a Radon-Nikodym derivative

with respect to the Bayesian posterior distribution:

ξt =
dµ∗t
dµt

In particular, when the time-varying parameter αt is positive, the agent gives more

weight to lower continuation values, and the distorted distribution has a bias with respect

to the Bayesian posterior that we call pessimism.
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The definition of the distortion shows that there are two sources of pessimism. The

first is the time-varying parameter αt that affects the slope of the negative exponential in

(3). Intuitively this time varying coefficient controls the agent’s tastes: the higher is αt,

the more the agent is worried about bad outcomes (lower expected continuation values).

The second source of pessimism is the agent’s uncertainty Qt, that is the variance of the

Bayesian posterior distribution over θt. To understand the intuition consider the case of

a positive αt: higher uncertainty implies a bigger probability over bad outcomes, leading

to a more cautious behavior.

We allow both these sources of pessimism to vary over time. As in Bhandari et al.

(2017), who work with multiplier preferences,2 we assume that the coefficient of ambiguity-

attitude follows an AR(1) process around a mean:

αt = (1− ρα)ᾱ + ρααt−1 + σαεαt . (4)

In this way, agent’s tastes can change over time, allowing for periods of higher or lower

pessimism, and eventually also for periods of optimism (when αt becomes negative).

In addition, we also introduce time-varying uncertainty: in each period the variance of

the prior distribution over θt is hit by a shock that can reduce or increase the uncertainty

perceived by the agent. Formally, at period t − 1 the posterior distribution of θt−1 is a

Normal N (mt−1, Qt−1). In a standard filtering process this distribution becomes the prior

that the agent will use to update her beliefs over θt. We assume, instead, that at each

time t, before the agent observes the outcome At, the variance of her prior is:

Q∗t−1 = Qt−1e
σηηt (5)

where ηt ∼ N (0, 1). Without the shock ηt the variance Qt converges to the time invari-

ant variance of the steady state Kalman filter Q. The presence of the shock introduces

variations around Q, so that when the agent takes her decisions she may feel more or less

confident about her knowledge over θ.

We could introduce time variation in uncertainty also assuming that system (1) has

stochastic volatility or time varying parameters. The assumption of equation (5) is both

simple and more in line with the one of equation (4), so that we treat both sources of

pessimism in a similar way.

2The multiplier preferences are one of the specifications of the robust preference approach by Hansen
and Sargent (2011). In the multiplier preferences approach there is a penalty parameter that plays an
analogous role to our parameter of ambiguity aversion. However, the penalty parameter controls both
ambiguity and ambiguity aversion, while in our case we are able to distinguish these two features.
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3 Approximation of a general equilibrium model with

smooth ambiguity preferences

Computing the solution of a model under the assumption of recursive smooth ambiguity

preferences in not straightforward because it entails the computation of the expected value

function that enters in the definition of ξt. The use of numerical methods, as in Collard

et al. (2018), is not an option if the goal is estimation.

The alternative that we consider is to approximate the model using a perturbation

technique based on series expansion (Holmes, 1998; Lombardo, 2010). The risk of the

approximation is that we loose the non-linear effects we are interested in: a linear ap-

proximation, for example, would cancel all the effects of ambiguity aversion, as clear from

equations (2) and (3). Borovička and Hansen (2014a), Borovička and Hansen (2014b)

face the same issue working with multiplier preferences and propose to perturb jointly

the standard deviations and the parameter of ambiguity aversion: in this way the dis-

tortion ξt is approximated up to one order higher with respect to the rest of the model.

We apply this idea to models with smooth ambiguity preferences: with respect to the

multiplier preference specification, we have a learning process over the vector of latent

variables. Then, we have the additional challenge to keep track of the evolution of beliefs.

3.1 The perturbation technique

3.1.1 The evolution of beliefs

Let’s assume that yt is a variable that depends on a set of unobservable components

collected in the (v × 1) vector θt, that follows a Dynamic Linear model (DLM):

yt = Fθt + Ωωyt (6)

θt = G0θ̄ +G1θt−1 + Σωθt

where F is (1× v), G0 and G1 are (v × v), Ω is (1× k3) and Σ is (v × k2); ωyt ∼ Nk3(0, I)

and ωθt ∼ Nk2(0, I). Let’s assume that G1 is a stationary matrix.3 Note that under this

assumption if G0 = (I −G1), θ̄ is the steady-state of θt, and we assume it is known.

We assume that in each period the agents observe the realization of yt, but they never

observe the realization of the shocks ωyt , ω
θ
t and of the latent vector θt. All the parameters

are known.

The agents form subjective beliefs about the latent vector θt and update them in

each period given the observation yt applying the Kalman filter. Since we want to allow

3In system (1) this assumption does not hold: we will proceed considering as observable the growth rate
of technology.
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for time-variation in uncertainty, we assume that in each period the variance-covariance

matrix of the prior distribution can be hit by an iid shock ηt, as in equation (5). The

timing is as follows: at time t−1 the beliefs of the agent are summarized by their posterior

distribution:

θt−1|yt−1 ∼ N(mt−1, Qt−1) .

The variance Qt−1 is the relevant matrix for the decisions that the agent takes at t − 1.

However, before observing the realization of yt and updating his beliefs over the latent

vector, the variance Qt−1 is hit by the shock ηt as in equation (5). Then the new data

arrive and the agent updates her beliefs using the Bayes rule and deriving the posterior

distribution:

θt|yt ∼ N(mt, Qt) .

It is convenient to rewrite the posterior mean and variance in recursive form:

mt = (I −KtF )G0θ̄ + (I −KtF )G1mt−1 +KtFθt +KtΩω
y
t (7)

and

Qt = (I −KtF )G1Q
∗
t−1G

′
1 + (I −KtF )W (8)

where Kt is the Kalman Gain. Note that the DLM specified in equation (6) is time-

invariant, meaning that F,G0, G1,Σ,Ω are constant. In the absence of uncertainty shocks

(i.e. when ηt = 0), the filter converges to a steady state solution, with time-invariant

posterior variance Q and constant Kalman gain K.

3.1.2 The equilibrium conditions

Let xt be a (n×1) vector that can include both control and state variables (endogenous and

exogenous), except for the vector of the latent exogenous state variables θt. Recall that

the scalar αt is the coefficient of ambiguity aversion for which we assume the exogenous

AR(1) process (4).

The system of equilibrium conditions of our model with smooth ambiguity is as follows:

0 = Eµt
[
ξtEθt

[
g1
(
xt+1, xt, xt−1, θt+1, θt, ω

x
t+1, ω

x
t , ω

θ
t+1, ω

y
t+1

)]]
(9)

0 = Eθt
[
g2
(
xt+1, xt, xt−1, θt+1, θt, ω

x
t+1, ω

x
t , ω

θ
t+1, ω

y
t+1

)]
(10)

where g1
t is an (n1×1) vector function that collects all the equilibrium conditions in which

it appears the distorted expectation of θt, g
2
t is an (n2 × 1) vector function that collects

all the equilibrium conditions in which θt appears without expectation. The sum of the

equilibrium conditions is n: n1 +n2 = n. Finally, ωxt+1 is a (k1×1) vector of i.i.d.Gaussian
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innovations: ωxt+1 ∼ N(0, I). To define the equilibrium we need to take into account the

dynamics of θt in the state equation of system (6), the dynamics of αt in equation (4),

the evolution of the beliefs mt in equation (7) and the evolution of the variance of the

posterior Qt in equation (8).

3.1.3 The approximated dynamics

The recursive solution of the model is defined by the endogenous law of motion of xt that

satisfies the equilibrium conditions of the model. We define the endogenous law of motion

as4

xt+1 = ψ(xt,mt+1, Qt+1, αt+1, θt+1, ω
x
t+1) .

The endogenous law of motion ψ is unknown and needs to be solved for from the set of

equilibrium conditions. In order to approximate it let’s consider the following class of

models indexed by the perturbation parameter q, that scales the volatility of the shocks:

xt+1(q) = ψ
(
xt(q),mt+1(q), Qt+1(q), αt+1(q), θt+1(q), qωxt+1, q

)
where

mt+1(q) = (I −Kt+1(q)F )G0θ̄ + (I −Kt+1(q)F )G1mt(q) +Kt+1(q)Fθt+1(q) +Kt+1(q)qΩωyt+1

Qt+1(q) = (I −Kt+1(q)F ) (G1Q
∗
t (q)G

′
1 +W )

αt+1(q) = (1− ρα)ᾱ + ρααt(q) + qσαεα,t+1

θt+1(q) = G0θ̄ +G1θt(q) + qΣωθt+1

with

Kt+1(q) = Ht+1(q)F ′ [FHt+1(q)F ′ + V ]
−1

Ht+1(q) = G1Q
∗
t (q)G

′
1 +W

Q∗t (q) = Qt(q)e
qσηηt+1

Assume there exists a series expansion of xt+1(q),mt+1(q), Qt+1(q), αt+1(q), θt+1(q)

around q = 0:

xt+1(q) ≈ x̄+ qx1t+1 +
q2

2
x2t+1

mt+1(q) ≈ m̄+ qm1t+1 +
q2

2
m2t+1

4In general, the endogenous law of motion can be a function of θt, if the latter is known by some agents,
or if it enters in market clearing conditions or in the budget constraints. We assume that nobody knows
the true value of θt.
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Qt+1(q) ≈ Q+ qQ1t+1 +
q2

2
Q2t+1

αt+1(q) ≈ ᾱ + qα1t+1

θt+1(q) ≈ θ̄ + qθ1t+1

where the expansion of αt+1 and θt+1 are at the first-order since they are linear.

The zeroth-order approximation is 5

x̄ = ψ
(
x̄, m̄, Q, ᾱ, θ̄, 0, 0

)
m̄ = θ̄

Q = (I −KF )H

The approximation for xt is defined by

x1t+1 = ψxx1t + ψmm1t+1 + ψQvec(Q1t+1) + ψαα1t+1 + ψθθ1t+1 + ψωxω
x
t+1 + ψq (11)

where ψQ︸︷︷︸
(n×v2)

= ∂ψ
∂vec(Qt+1)

and vec(Q1t+1)︸ ︷︷ ︸
(v2×1)

= vec∂Qt+1(q)
∂q

, and

x2t+1 = ψxx2t + ψxx (x1t ⊗ x1t) + 2ψxm (m1t+1 ⊗ x1t) + 2ψxQ (vecQ1t+1 ⊗ x1t) +

+ 2ψxαα1t+1x1t + 2ψxθ (θ1t+1 ⊗ x1t) + 2ψxωx
(
ωxt+1 ⊗ x1t

)
+ 2ψxqx1t + ψmm2t+1+

+ ψmm (m1t+1 ⊗m1t+1) + 2ψmQ (vecQ1t+1 ⊗m1t+1) + 2ψmαα1t+1m1t+1+

+ 2ψmθ (θ1t+1 ⊗m1t+1) + 2ψmωx
(
ωxt+1 ⊗m1t+1

)
+ 2ψmqm1t+1 + ψQvecQ2t+1+

+ ψQQ (vecQ1t+1 ⊗ vecQ1t+1) + 2ψQαα1t+1vecQ1t+1 + 2ψQθ (θ1t+1 ⊗ vecQ1t+1) +

+ 2ψQωx
(
ωxt+1 ⊗ vecQ1t+1

)
+ 2ψQqvecQ1t+1 + ψααα1t+1α1t+1 + 2ψαθθ1t+1α1t+1+

+ 2ψαωxω
x
t+1α1t+1 + 2ψαqα1t+1 + ψθθ (θ1t+1 ⊗ θ1t+1) + 2ψθωx

(
ωxt+1 ⊗ θ1t+1

)
+ 2ψθqθ1t+1+

+ ψωxωx
(
ωxt+1 ⊗ ωxt+1

)
+ 2ψωxqω

x
t+1 + ψqq (12)

The first and second order terms for approximation of the variance-covariance matrix

are:

Q1t+1 = ZQ1tZ
′ + ZQZ ′σηηt+1 (13)

and

Q2t+1 = ZQ2tZ
′ + 2σηηt+1ZQ1tZ

′ + σ2
ηη

2
t+1ZQZ

′ − 2ZQ1tDQ1tZ
′ − 2σηηt+1ZQ1tDQZ

′+

5Note that m̄ denotes the beliefs (the mean of the posterior distribution of θ) in the deterministic
steady-state (i.e. when all the shocks are zero). It is different from the beliefs given by the steady-state
solution of the Kalman filter (when just the uncertainty shock is zero).
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− 2σηηt+1ZQDQ1tZ
′ − 2σ2

ηη
2
t+1ZQDQZ

′ (14)

where Z ≡ (I −KF )G1, K is the steady state Kalman gain andD ≡ G′1F
′ [FHF ′ + V ]−1 FG1.

For the mean of the posterior distribution we have

m1t+1 = (I −KF )G1m1t +KFθ1t+1 +KΩωyt+1 (15)

where

θ1t+1 = G1θ1t + Σωθt+1

is the first order term in the approximation of θt, and

m2t+1 = Zm2t − 2S̃ (vec(Q1t)⊗m1t) + 2S̃ (vec(Q1t)⊗ θ1t)− 2σηηt+1ZQDm1t + 2σηηt+1ZQDθ1t+

+ 2Z [Q1t +Qσηηt+1]G′1F
′ [FHF ′ + V ]

−1 (
FΣωθt+1 + Ωωyt+1

)
(16)

where

S̃ ≡
[
(vecD)′ ⊗ Z•j

]v
j=1

The first-order term in the approximation for αt+1 is:

α1t+1 = ραα1t + σαεα,t+1 (17)

The unknowns of the system we need to find in order to obtain the approximated

solution of the model are ψx, ψm, ψQ, ψα, ψθ, ψωx and ψq; ψxx, ψxm, ψxQ, ψxα, ψxθ, ψxωx ,

ψxq, ψmm, ψmQ, ψmα, ψmθ, ψmωx , ψmq, ψQQ, ψQα, ψQθ, ψQωx , ψQq, ψαα, ψαθ, ψαωx , ψαq,

ψθθ, ψθωx , ψθq, ψωxωx , ψωxq, ψqq. In order to find those coefficients, we need to take the

zero-th, first-order and second-order expansions of the system of equilibrium conditions

(9),(10):

0 = g1
0t

0 = g2
0t

0 = Eµt
[
ξ0tEθt

(
g1

1t

)]
(18)

0 = Eθt
(
g2

1t

)
0 = Eµt

[
ξ0tEθt

(
g1

2t

)]
+ 2Eµt

[
ξ1tEθt

(
g1

1t

)]
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0 = Eθt
(
g2

2t

)
where ξ0t and gi0t are respectively ξt(q) and git(q) evaluated for q = 0, ξ1t and gi1t are

respectively their first derivatives with respect to q , evaluated at q = 0, and ξ2t and gi2t

are respectively their second derivatives with respect to q , evaluated at q = 0, i = 1, 2.

To approximate the beliefs distortion ξt we first need to approximate the continuation

value.

3.1.4 Expansion of the continuation value recursion

The continuation value recursion when agents have smooth ambiguity preferences is as

follows:

Vt = u(Ct) + βφ−1 [Eµtφ (EθtVt+1)] (19)

where Ct denotes consumption, and we assume that

φ(y) = − 1

αt
exp{−αty} (20)

Let’s assume that u(Ct) = ln(Ct). Since in equilibrium Ct has a unit root, the utility

function ut has a unit root as well, implying that also Vt is non-stationary. In order to

proceed with the approximation of the value function recursion, we want to decompose it

in a stationary component and its trend component. We start decomposing in this way

the utility function.

u (Ct) = lnCt

= û
(
Ĉt

)
+ lnAt (21)

where Ĉt = Ct
At

and ln(At) is defined by system (1). Define ϕ
(
θt, ω

θ
t+1, ω

y
t+1

)
as:

ln

(
At+1

At

)
= ϕ

(
θt, ω

θ
t+1, ω

y
t+1

)
= F

(
G0θ̄ +G1θt + Σωθt+1

)
+ Ωωyt+1 (22)

Then, we can write the value function as the sum of a stationary component and a

non-stationary component, as follows

Vt = V̂t + (1− β)−1 ln (At) (23)

and the recursion of the stationary component of the value function is:
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V̂t = û(xt)−
β

αt
lnEµt

[
exp

(
−αt

(
EθtV̂t+1 + (1− β)−1Eθtϕ

(
θt, ω

θ
t+1, ω

y
t+1

)))]
(24)

For the approximation of the stationary value function we follow Borovička and Hansen

(2014a), Borovička and Hansen (2014b) and Bhandari et al. (2017): we perturb jointly

the volatility of the shocks and the coefficient of ambiguity aversion with the parameter

q.

V̂t(q) = û(xt(q), q)− β
q

(ᾱ + α1t)
×

× lnEµt

[
exp

(
−(ᾱ + α1t)

q

(
EθtV̂t+1(q) + (1− β)−1Eθtϕ

(
θt(q), qω

θ
t+1, qω

y
t+1, q

)))]
(25)

In the last equation we need to consider a series expansions for û(xt) and ϕ(θt, ω
θ
t+1, ω

y
t+1).

The stationary value function recursion is approximated as:

V̂t(q) ≈ V̄ + qV̂1t +
q2

2
V̂2t (26)

The zeroth-order approximation of the value function, V̄ , is obtained evaluating the

perturbed value function recursion at q = 0:

V̄ = (1− β)−1

[
ū+

β

1− β
ϕ̄

]
(27)

where ϕ̄ ≡ ϕ(θ̄, 0, 0, 0).

To obtain the first-order approximation of the value function recursion, V̂1t, let’s take

the derivative of equation (25) with respect to q, and evaluate it at q = 0:

V̂1t = û1t −
β

(ᾱ + α1t)
lnEµt

[
exp

(
− (ᾱ + α1t)Eθt

(
V̂1t+1 +

ϕ1t+1

1− β

))]
(28)

Taking the second-order derivative of equation (25) with respect to q, evaluated for

q = 0, we obtain the second-order approximation of the value function recursion:

V̂2t = û2t + βEµt

 exp
[
− (ᾱ + α1t)Eθt(V̂1t+1 + ϕ1t+1

1−β )
]

Eµt

[
exp

[
− (ᾱ + α1t)Eθt(V̂1t+1 + ϕ1t+1

1−β )
]]Eθt (V̂2t+1

) (29)

13



We assume that 6

V̂t = V̂ (xt,mt, Qt, αt)

We can perturb the stationary value function as follows:

V̂t(q) = V̂ (xt(q),mt(q), Qt(q), αt(q), q)

Then, the first and second order terms in the approximated value function are:

V̂1t = Vxx1t + Vmm1t + VQvec(Q1t) + Vαα1t + Vq (30)

V̂2t = Vxx2t + Vxx (x1t ⊗ x1t) + 2Vxm (m1t ⊗ x1t) + 2VxQ (vec(Q1t)⊗ x1t) + 2Vxαα1tx1t+

+ 2Vxqx1t + Vmm2t + Vmm (m1t ⊗m1t) + 2VmQ (vec(Q1t)⊗m1t) + 2Vmαα1tm1t+

+ 2Vmqm1t + VQvec(Q2t) + VQQ (vec(Q1t)⊗ vec(Q1t)) + 2VQαα1tvec(Q1t)+

+ 2VQqvec(Q1t) + Vαα (α1t ⊗ α1t) + 2Vαqα1t + Vqq (31)

where VQ︸︷︷︸
(1×v2)

= ∂V̂t
∂vec(Qt)

, vec(Q1t)︸ ︷︷ ︸
(v2×1)

= vec∂Qt(q)
∂q

, VQQ︸︷︷︸
(1×v4)

= ∂2V̂t
∂vec(Qt)2

and vec(Q2t)︸ ︷︷ ︸
(v4×1)

= vec∂
2Qt(q)
∂q2

.

Substituting the approximations V̂1t and V̂2t respectively in (28) and (29), we obtain

all the coefficients of the approximated value function recursion (given the coefficients of

the endogenous law of motion) using the method of undetermined coefficients.

3.1.5 Approximation of belief distortion

We now approximate the belief distortion ξt, perturbing jointly the volatility of the shocks

and the coefficient of ambiguity aversion, as in the previous section, and using the ap-

proximation of the value function. Let’s consider the class of models:

ξt(q) =
exp

[
− (ᾱ+α1t)

q
Eθt

(
V̂t+1(q) + (1− β)−1 ϕ

(
θt(q), qω

θ
t+1, qω

y
t+1, q

))]
Eµt

[
exp

[
− (ᾱ+α1t)

q
Eθt

(
V̂t+1(q) + (1− β)−1 ϕ

(
θt(q), qωθt+1, qω

y
t+1, q

))]] (32)

and assume:

ξt ≈ ξ0t + qξ1t +
q2

2
ξ2t .

6Given our assumption that the agents do not observe θ, the stationary value function does not depend
on it.
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Substituting the approximated value function and simplifying for q, we obtain:

ξt(q) =
exp

[
−(ᾱ + α1t)Eθt

(
V̂1t+1 + q

2
V̂2t+1 + q2

6
V̂3t+1 + (1− β)−1 ϕ1t+1

)]
Eµt

[
exp

[
−(ᾱ + α1t)Eθt

(
V̂1t+1 + q

2
V̂2t+1 + q2

6
V̂3t+1 + (1− β)−1 ϕ1t+1

)]] (33)

Thanks to this perturbation, the zeroth-order approximation of ξt is not simply equal

to one and we are able to keep some of the effects of ambiguity aversion even when we

approximate the solution to the first-order (in fact, as shown in (18), ξ0t enters in the

first-order approximation of the equilibrium conditions).

The zeroth-order approximation is:

ξ0t =
exp (−αtBθ1t)

Eµt [exp (−αtBθ1t)]

where B ≡
(
VxψmKFG1 + VxψθG1 + VmKFG1 + (1− β)−1 ϕθ

)
.Taking the Bayesian ex-

pectation at the denominator we can rewrite ξ0t as:

ξ0t =
exp (−αtBθ1t)

exp
(
−αtB (mt − m̄) +

α2
tBQtB

′

2

) (34)

Note that Eµtξ0t = 1: ξ0t is a Radon-Nykodim derivative with respect to µt, and it

changes the Bayesian posterior distribution into a new measure:

ξ0t =
dµ∗t
dµt

where µ∗t is the new probability measure on θ1t.

To find the new distribution of θ1t under the probability measure µt∗ we can multiply

the distortion ξ0t times the probability density function of θ1t under the measure µt:

ξ0tfµt(θ1t) ∝ exp

{
−1

2

(
θ′1t − 2

[
(mt − m̄)′ − αtBQt

)]
Q−1
t θ1t

}
(35)

We recognize that equation (35) shows the kernel of a multivariate Normal distribution

with mean (mt − m̄) − αtQtB
′ and variance Qt. Then, the distribution of θt under the

new measure is:

θt ∼ N (mt − αtQtB
′, Qt) (36)

The effect of ξt is to shift the mean of the Bayesian posterior distribution, leaving the

variance unchanged: it creates a bias. In particular, when αt is positive the effect is to

shift the distribution toward more negative outcomes, and we call this bias pessimism.
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The possibility to distinguish the two sources of pessimism is a peculiarity of the

smooth ambiguity preferences. However, from (36) we see that αt and Qt enter multi-

plicatively. Then, in order to disentangle the contribution of a shock to ambiguity attitude

and a shock to uncertainty, we need to consider that while a shock to αt only changes the

mean of the distorted distribution, a shock to uncertainty changes both the mean and the

variance.

4 The core mechanism

4.1 Endowment economy

Consider again our simple endowment economy. We specify the dynamics of the exogenous

productivity in terms of its growth rate: the vector of latent variables in (6) is:

θt =

 γt

ft

ft−1

 .

The first order approximation of the risk-free interest rate is proportional to the expected

value of the growth rate of technology. Under complete information the agent knows the

value of θt, and the risk-free rate is:

RC
1t = β−1eγ̄

[
ργ ρf − 1 0

]
θ1t (37)

We assume, instead, that the agent cannot observe the vector θt and she consider a

Bayesian posterior distribution. Under neutrality toward ambiguity we are in the case of

subjective expected utility and the risk-free interest rate is:

RB
1t = β−1eγ̄

[
ργ ρf − 1 0

]
m1t (38)

Finally, under the smooth ambiguity preferences, the expected value of the growth

rate of technology is obtained distorting the Bayesian posterior, and the risk-free rate is:

R1t = β−1eγ̄
[
ργ ρf − 1 0

]m1t − (ᾱQ1t +Qα1t + ᾱQ)B′︸ ︷︷ ︸
Pessimism

 (39)

The equation above shows how an increase in pessimism, given by an increase in αt

or equivalently to an increase in Qt, has the effect of lowering the risk-free rate. The

intuition is straightforward: higher pessimism leads to a more cautious behavior with

respect to negative scenarios. The agent acts as if her expectation about the growth rate
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of technology is lower: she would like to decrease consumption and save in the risk-free

asset. In equilibrium, a lower interest rate is required to let her consume the endowment

At.

To clarify the argument we can simulate the dynamics of this simple economy. Let’s

calibrate γ̄ to 0.005, both the autoregressive parameter ργ and ρf to 0.99, the subjective

discount factor β to 0.995, the variances σγ to 0.001 and σf to 0.01, and the mean

of ambiguity aversion ᾱ to 0.1. Consider the effect of a negative temporary shock εft.

Figure 1 shows the true dynamics of γt and ft and compares them with the Bayesian

and the distorted beliefs. In particular we show the online filtered expectations. When a

temporary shock hits technology, the agent observes a lower At than what she expected.

She attributes part of it to a shift in her estimated value for γt: this can result from both

a permanent shock or to a wrong assessment in her previous estimation. As time goes

on, she learns the truth (there are no other shocks) and her beliefs converge to the true

values. When she takes decisions, however, she acts as if her beliefs were distorted (the

continuous red line). The pattern is the same as the Bayesian posterior, with a constant

wedge.

In Figure 2 we plot the response of the risk-free rate for the three benchmarks. Under

complete information the agent knows that the shock is temporary: she expects a positive

growth rate since technology has to recover its long run trend, and the interest rate

increases. By contrary, in the other two cases, the attribution of a movement in γt pushes

down the interest rate. Figure 2 also shows an important feature of the model: pessimism

creates a wedge between the steady state of the interest rate and its long run average.

In Figure 3 we simulate the response to a permanent shock. Under complete informa-

tion the interest rate drops on impact while for the Bayesian and for the ambiguity averse

agent the response is much smoother, given that they assign a positive probability to the

case of a transitory disturbance.

Finally, Figure 4 shows the negative effect on the interest rate of an increase in pes-

simism, as also clear from equation (39).

This exercise highlights two features of the core mechanism: first, the presence of

ambiguity makes the response to a temporary shock to technology qualitatively similar to

the response of a permanent shock in case of complete information. Second, pessimism (or

ambiguity aversion) may act as an amplifier of a negative shock, increasing its persistence.

4.2 Identifying the sources of pessimism

In the simple endowment economy approximated to the first order it is not possible to

distinguish what causes variations in pessimism: an increase in ambiguity aversion has

the same effects on the risk-free rate of higher ambiguity. Note, however, that while αt

only affects the mean of the distorted posterior distribution, Qt moves both the mean
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and the variance. Then, to identify the effect of these two different sources of pessimism

we introduce a risky asset and consider an approximation to the second order: we can

capture the extra precautionary motives related to an increase in ambiguity.

FIGURE TO BE ADDED

5 A particle filtering strategy for the approximated

solution

We propose a particle filtering strategy for a model approximated with a second order

series expansion. As in Amisano and Tristani (2007) we avoid using the bootstrap filter,

which is not very efficient, and suggest a proposal density that is based on the linear

approximation.

For simplicity consider the notation in which the vector xt contains all the variables

in the model, so that the solution is written as:

xt ≈ x0 + qx1t +
q2

2
x2t (40)

where q is the perturbation parameters. The dynamics of the first order term are linear:

x1t = ψq + ψxx1t−1 + ψωεt (41)

while the dynamics of the second order are non-linear:

x2t = ψqq + ψxx2t−1 + ψxx(x1t−1 ⊗ x1t−1) + ψxqx1t−1 + ψxε(εt ⊗ x1t−1) + ψεε(εt ⊗ εt) (42)

where εt ∼ N(0, I). For simplicity let’s assume that the parameters ψ’s and the constant

vector x0 are known, and at each time t we observe the variables Yt that are linearly

related to xt: Yt = Fxt.

Suppose that the posterior distribution of x1t−1 and x2t−1 is approximated by a set of

particles
{

(x1t−1, x2t−1)(i)
}N
i=1

and associated weights
{
w

(i)
t−1

}N
i=1

. At time t we observe

the new data Yt and we want to approximate the joint posterior distribution of x1t and

x2t:

p (x1t, x2t|Y1:t)

through a new set of particles.

Our state space model has a linear observation equation:

Yt = Fx0 + qFx1t +
q2

2
Fx2t + vt (43)

where vt ∼ N(0, σ2
v) appears because equation (40) is an approximation. The state
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equation is non-linear, and it is described by equations (41) and (42). The peculiar

problem of the system is that both x1t and x2t are approximations of the same vector xt,

so they depend on the same vector of shocks εt. Moreover εt enters non linearly in x2t. In

other words, even if equation (41) is linear, the model is not conditionally linear and we

need to draw x1t and x2t jointly.

5.1 The proposal distribution

The proposal we have in mind comes from the following intuition: the last term of the

approximation (40) is of higher order, it counts less. Moreover, if we had a first order

approximation, that is if we used xt ≈ x0 +qx1t instead of equation (40), the model would

have been linear and Gaussian. Then, the idea is to use, as importance distribution, the

posterior distribution we would have using a first order approximation. This posterior,

which is available analytically, should not be too far from the posterior distribution of the

second order approximation.

Consider the auxiliary model in which the observation equation is:

Yt = Fx0 + qFx1t + T
q2

2
Fx2t + vt (44)

where T can be zero or one::

T =

{
0 : auxiliar model

1 : original model

As proposal distribution we use the following density:

p (x1t, x2t|x1t−1, x2t−1, T = 0, Yt) = p (x2t|x1t, x1t−1, x2t−1, T = 0, Yt) p (x1t|x1t−1, x2t−1, T = 0, Yt)

Note that given x1t and x1t−1, x2t is deterministic, since the shock εt is determined by

equation (41). Then, the first term on the right hand side of the equation above is equal

to one. In the second term, instead, we can drop the dependence from x2t−1 since T = 0.

Then:

p (x1t, x2t|x1t−1, x2t−1, T = 0, Yt) = p (x1t|x1t−1, T = 0, Yt) (45)

which can be computed by the Kalman filter. Drawing from the proposal can be done as

follows: first draw x1,t from the density in (45), this give the shock εt through equation

(41), and we obtain x2t using equation (42).

Using a resample-propagation scheme as in Pitt and Shephard (1999), the algorithm

is:

1. Resample with weights proportional to: w̃(i) ∝ wt−1p
(
Yt|g(x

(i)
1t−1, x

(i)
2t−1), T = 1

)
where g(x

(i)
1t−1, x

(i)
2t−1) is the expected value of x

(i)
1t−1 and x

(i)
2t−1
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2. Propagate (x1t, x2t)
(i) from p

(
x1t|x(i)

1t−1, T = 0, Yt

)
3. Compute new weights:

w
(i)
t =

wt−1p
(
Yt|x(i)

1t , x
(i)
2t , T = 1

)
p
(
x

(i)
1t , x

(i)
2t |x

(i)
1t−1, x

(i)
2t−1, T = 1

)
wt−1p

(
Yt|g(x

(i)
1t−1, x

(i)
2t−1), T = 1

)
p
(
x

(i)
1t |x

(i)
1t−1, T = 0, Yt

)
=

p
(
Yt|x(i)

1t , x
(i)
2t , T = 1

)
p
(
Yt|x(i)

1t−1, T = 0
)

p
(
Yt|g(x

(i)
1t−1, x

(i)
2t−1), T = 1

)
p
(
Yt|x(i)

1t , T = 0
)

6 Conclusions

For Oreste:

• Goal of the project: study the role of beliefs in accounting for the drop in interest

rates after the Great recession: it is an empirical question.

• Not there yet: in the current draft we propose a strategy to answer our research

question.

• The strategy has the following features:

1. Ambiguity on the growth rate of technology

2. Smooth ambiguity preferences to analyze the role of pessimism in a flexible

way (possibility to distinguish two sources of pessimism)

3. Second order approximation. Perturbation technique for general equilibrium

model under smooth ambiguity preferences: using numerical methods would

make the estimation not feasible

4. Particle filter for series expansion.

• Next step: put the core mechanism in an appropriate model and estimate it: we are

considering the characteristic of the model to be estimated.
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Figure 1: Dynamics of beliefs after a transitory shock to technology
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Figure 2: Impulse response to a transitory shock to technology
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Figure 3: Impulse response to a permanent shock to technology
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Figure 4: Impulse response to a shock to pessimism
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