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MOTIVATION

Real-time uncertainty about economic conditions:
What are the policy implications?

Potential application

Consequences of tracking unobserved objects

it = r̄t|t + π̄ + φπ(πt|t − π̄) + φx(yt|t − ȳt|t) + . . .

For example: Orphanides (2003, JME)

w/backward-looking Keynesian model

We set out to consider the implications
in forward-looking models . . .
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THIS PAPER

Multiple equilibria in linear RE models

• Well understood when all agents have perfect information:
Lubik and Schorfheide (2003), Farmer et al. (2015)

• Indeterminacy gives rise to fluctuations driven by
non-fundamental “belief shocks”

• Taylor principle rules out belief shocks and indeterminacy

We show that under asymmetric information . . .

• . . . belief shocks come into play, even when the
full-information model has a unique equilibrium

• . . . scope of belief shocks is limited
(novel compared to full-info indeterminacy)
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SETUP

Two kinds of agents:

1 Fully informed public

2 Imperfectly informed central bank

Both: rational expectations

Equilibrium conditions

• Linear RE difference system describes optimal behavior

• Time-invariant, linear, Gaussian equilibria:
Optimal expectations described by Kalman filter

• Standard criterion: stable outcomes
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A SIMPLE EXAMPLE ECONOMY FULL INFO

Textbook case of Woodford (2003), Gali (2008) . . .

An exogenous real rate

rt = ρ rt−1 + εt Et−1εt = 0

Fisher equation and natural-rate policy rule

it = rt + Etπt+1

it = rt + φπt φ > 1

Full-information equilibrium

πt+1 = φπt + ηt+1 ηt+1 ≡ πt+1 − Etπt+1

Only one stable solution: πt = 0 and ηt = 0 ∀ t



A SIMPLE EXAMPLE ECONOMY FULL INFO

Textbook case of Woodford (2003), Gali (2008) . . .

An exogenous real rate

rt = ρ rt−1 + εt Et−1εt = 0

Fisher equation and natural-rate policy rule

it = rt + Etπt+1

it = rt + φπt φ > 1

Full-information equilibrium

πt+1 = φπt + ηt+1 ηt+1 ≡ πt+1 − Etπt+1

Only one stable solution: πt = 0 and ηt = 0 ∀ t



A SIMPLE EXAMPLE ECONOMY FULL INFO

Textbook case of Woodford (2003), Gali (2008) . . .

An exogenous real rate

rt = ρ rt−1 + εt Et−1εt = 0

Fisher equation and natural-rate policy rule

it = rt + Etπt+1

it = rt + φπt φ > 1

Full-information equilibrium

πt+1 = φπt + ηt+1 ηt+1 ≡ πt+1 − Etπt+1

Only one stable solution: πt = 0 and ηt = 0 ∀ t



A SIMPLE EXAMPLE ECONOMY FULL INFO

Textbook case of Woodford (2003), Gali (2008) . . .

An exogenous real rate

rt = ρ rt−1 + εt Et−1εt = 0

Fisher equation and natural-rate policy rule

it = rt + Etπt+1

it = rt + φπt φ > 1

Full-information equilibrium

πt+1 = φπt + ηt+1 ηt+1 ≡ πt+1 − Etπt+1

Only one stable solution: πt = 0 and ηt = 0 ∀ t



TAYLOR-TYPE POLICY RULE FULL INFO

Alternative policy rule in the simple example

Interest rate rule w/o natural rate tracking

it = φ πt with |φ| > 1

Full information outcomes

πt = ḡ rt and ηt = ḡ εt with ḡ =
1

φ − ρ



LESSONS FROM FULL-INFORMATION BENCHMARK
To avoid multiple equilibria . . .

Policy rule: it = φπt + . . .

• Must respond to endogenous variables, like πt,
not just to exogenous states

• Taylor principle, |φ| > 1: “Threat” of explosive behavior
invalidates many candidate equilibria

• See, for example, Bullard and Mitra (2002), Gali (2011)

Clarida et al (2000), Lubik & Schorfheide (2004)

|φ| < 1 did contribute to Great Inflation

Orphanides (2001, 2003)

• |φ| > 1 with real-time projections it = φπt|t + . . .

• and a backward-looking model
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IMPERFECT INFORMATION SETUP

Private sector: perfectly informed

• Homogenous private sector

• Fully informed about state of the economy: St

• Et(·) ≡ E(·|St)

Central Bank: imperfectly informed

• Observes measurement vector Zt = HSt

• Central bank’s projection of any variable xt is

xt|t = E
󰀃
xt|Zt

󰀄
and xt+h|t = E

󰀃
xt+h|Zt

󰀄

• Nested info sets, Zt is spanned by St:

E
󰀃
Etxt+h|Zt

󰀄
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POLICY UNDER LIMITED INFORMATION

Limited Information Policy Rule

• Nominal interest rate must be function of Zt

• Svensson & Woodford (2004): certainty-equivalent rules

it = rt|t + φπt|t

Projection Condition

Certainty equivalence of full-info solution implies:

πt|t = 0 and πt|t−1 = 0

With Taylor rule, when πt = ḡ rt under full-info

πt|t = ḡ rt|t and πt|t−1 = ḡ rt|t−1
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POLICY UNDER LIMITED INFORMATION

Limited Information Policy Rule

• Nominal interest rate must be function of Zt

• Svensson & Woodford (2004): certainty-equivalent rules

it = rt|t + φπt|t

Projection Condition

Certainty equivalence of full-info solution implies:

πt|t = 0 and πt|t−1 = 0

With Taylor rule, when πt = ḡ rt under full-info
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EQUILIBRIUM CONDITIONS W/LIMITED INFORMATION

Fisher equation cum policy rule:

rt|t + φπt|t = rt + Etπt+1

Combines two kinds of expectations

Endogenous forecast errors (Sims, 2002)

ηt+1 ≡ πt+1 − Etπt+1

Inflation process

πt+1 = −(rt − rt|t) + ηt+1

Projection condition: πt|t = 0

ηt must support the projection condition
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ENDOGENOUS FORECAST ERRORS

As in Farmer et al: project ηt on fundamentals

ηt = γεεt + . . . + γbbt, bt ∼ N(0, 1)

• The “. . . ” stands in for other fundamental shocks

• bt: belief shock, orthogonal to fundamentals

We need to solve for the γ coefficients

Full-information case with it = rt + φπt (|φ| > 1)

πt = 0 =⇒ ηt = 0 =⇒ γb = 0

Imperfect information case: “projection condition”

γε, γb, etc. must support πt|t = 0
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Zt = rt + νt

Closed-form solutions in special case

Zt =

󰀗
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Signal includes endogenous variables
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CASE 1: EXOGENOUS SIGNAL

Central bank’s information set

Zt = rt + νt

rt|t = ρ rt−1|t−1 + κr

󰀃
rt − rt|t−1 + νt

󰀄

0 ≤ κr ≤ 1

Independently of ηt: r∗
t = rt − rt|t is stable

Inflation process: stable for any ηt

πt+1 = −
󰀃
rt − rt|t

󰀄
+ ηt+1 , Etηt+1 = 0

Projection condition πt|t = 0 restricts ηt

ηt = γεεt + γννt + γbbt s.t. πt|t = 0

γb unrestricted since Cov (bt, Zt) = 0
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= rt|t

Exogenous signal
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󰀃
rt−rt|t−1 + νt

󰀄

No response to inflation to begin with...

Similar reasoning with Taylor-type policy rule
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CLOSED-FORM SOLUTIONS IN SPECIAL CASE
Natural-rate rule: ḡ = 0, Taylor rule ḡ = 1/(φ − ρ)

Info set

Zt =

󰀗
πt + νt

rt

󰀘
⇒ rt|t = rt

Equilibrium outcomes

πt = ḡ ρ rt−1 + ḡ εt󰁿 󰁾󰁽 󰂀
πt|t=ḡ rt

+γννt + γbbt

with γν= −
1

2
±

󰁶
1

4
−

γ2
b

σ2
ν

, |γb|≤
1

2
σν

Key results

• Non-zero, but bounded belief shock loadings

• Multiple pairs of valid shock loadings (γν, γb)
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CASE 2: ENDOGENOUS SIGNAL

Central bank’s information set

Zt = πt + νt

rt|t = ρ rt−1|t−1 + κr

󰀃
πt − πt|t−1 + νt

󰀄

Inflation process

πt+1 = −
󰀃
rt − rt|t

󰀄
+ ηt+1

In general: Kalman filter ensures stable rt − rt|t

Projection condition restricts ηt and bounds γb

Cov (πt, Zt) = Var (πt) + Cov (πt, νt) = 0
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VARIANCE BOUND
Simple model with Zt = πt + νt, natural-rate rule it = rt|t + φπt|t

Ingredients

Projection condition: πt|t = 0

Info set: Zt = Zt|t

⇔ πt − πt|t = −(νt − νt|t)

Variance bound

Var (πt) = Var (πt|t) + Var (πt − πt|t)

= 0 + Var (νt − νt|t)

≤ Var (νt)



VARIANCE BOUND
Simple model with Zt = πt + νt

The variance bound generalizes also to the case of
a Taylor-type rule with πt = ḡ rt under full-info

Ingredients

Projection condition: πt|t = ḡ rt|t

Info set: Zt = Zt|t

⇔ πt − πt|t = −(νt − νt|t)

Variance bound

Var (πt) = Var (πt|t) + Var (πt − πt|t)

= ḡ2 Var (rt|t) + Var (νt − νt|t)

≤ ḡ2 Var (rt) + Var (νt)
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SETUP OF OUR GENERAL FRAMEWORK

Linear RE system for St =
󰀅
X ′

t Y ′
t

󰀆′

EtSt+1 + ĴSt+1|t = ASt + ÂSt|t + Ai it

it = Φiit−1 + ΦJSt+1|t + ΦASt|t

Zt = H St

• Xt backward-looking, with exogenous errors εt
• Yt forward-looking, with endogenous errors ηt

• it policy controls and Zt measurement

Assumptions

• Unique full-info equilibrium, and projection condition

• Gaussian errors

• Linear, time-invariant and stationary equilibrium

Kalman filter represents CB expectations



SETUP OF OUR GENERAL FRAMEWORK

Linear RE system for St =
󰀅
X ′

t Y ′
t

󰀆′
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GENERIC INDETERMINACY

Equilibrium state vector dynamics

St tracks projections and actual values
of Yt, Xt, it, it−1

St+1 = A St +B
󰀗
εt+1

ηt+1

󰀘

with A =

󰀗
(A−KC) 0

KxC P

󰀘

A is generally stable since

• P stable, known from full-info and stable

• (A − KC) stable, provided Kalman filter exists

No restrictions on ηt from A

(but some further restrictions from projection condition)
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DYNAMIC INFORMATION FRICTION IN A NK MODEL

Private sector PC and IS curves

(1 − γβ)πt = γπt−1 + βEtπt+1 + κxt

it = r̄t + Etπt+1 + σ(Etxt+1 − xt)

Exogenous natural rate process

r̄t = σEt∆ȳt+1 ∆ȳt = ρy∆ȳt−1 + εyt
yt = ȳt + xt

Monetary policy with noisy measurements

it = φππt|t + φxxt|t

Zt =

󰀗
πt + νπ

t

yt + νy
t

󰀘
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CALIBRATION BACKUP

Textbook values, noise variances from Ahmadi, Mathes & Wang (2017)

NK model parameters

β Discount Factor 0.99
σ Substitution Elasticity 1.00
φ Labor Elasticity 1.00
γ Inflation Indexation 0.25
κ PC Slope 0.17
φπ Taylor Rule Coefficient 2.50
φx Taylor Rule Coefficient 0.50

Natural rate process

ρy AR(1) - Coefficient 0.75
σy StD. Output Growth 0.30

Noise variances

σπ StD. Measurement Error 0.80
σx StD. Measurement Error 1.39
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MEASUREMENT ERRORS IN MACRO DATA
Ahmadi, Matthes and Wang (2017, JEDC)
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MULTIPLE EQUILIBRIA IN NK MODEL
IRF: Limited-information (red), full information (blue)



EXAMPLE EQUILIBRIUM IN NK MODEL
IRF: Limited-information (red), full information (blue)
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SECOND MOMENTS BACKUP

Limited-information (red), full information (blue)
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SIGNAL VS PROJECTIONS IN POLICY RULE
Simple example with Zt = πt + νt

Alternative policy rule:

it = φZt = φ(πt + νt)

Unique equilibrium for |φ| > 1

However:
• Aggressive policy response to νt

• Here: same outcomes as benchmark equilibrium,
and thus dominated by variance bound

• Generally not consistent with optimal-policy FOC
of Svensson & Woodford’s (2004)

In our case, multiplicity arises due to endogenous
attenuation of optimal projections



SIGNAL VS PROJECTIONS IN POLICY RULE
Simple example with Zt = πt + νt

Alternative policy rule:

it = φZt = φ(πt + νt)

Unique equilibrium for |φ| > 1

However:
• Aggressive policy response to νt

• Here: same outcomes as benchmark equilibrium,
and thus dominated by variance bound

• Generally not consistent with optimal-policy FOC
of Svensson & Woodford’s (2004)

In our case, multiplicity arises due to endogenous
attenuation of optimal projections



SIGNAL VS PROJECTIONS IN POLICY RULE
Simple example with Zt = πt + νt

Alternative policy rule:

it = φZt = φ(πt + νt)

Unique equilibrium for |φ| > 1

However:
• Aggressive policy response to νt

• Here: same outcomes as benchmark equilibrium,
and thus dominated by variance bound

• Generally not consistent with optimal-policy FOC
of Svensson & Woodford’s (2004)

In our case, multiplicity arises due to endogenous
attenuation of optimal projections



AGENDA

1 A Simple Example Economy

2 General Framework

3 NK Model

4 Determinacy Without Optimal Projections

5 Conclusions



SUMMARY

We simply rule out unbounded outcomes

• no unbounded nominal variables

• no switching between stable and unstable trajectories

Signal extraction adds only stable variables

• When steady-state Kalman filter exists, deviations
between true values and projections are stationary

• Existence of steady state Kalman filter ensured by
“detectability” and “stabilizability”

⇒ Generic indeterminacy

Key element of our setup

Central bank cannot observe information set driving
public’s forward-looking decisions



SUMMARY

We simply rule out unbounded outcomes

• no unbounded nominal variables

• no switching between stable and unstable trajectories

Signal extraction adds only stable variables

• When steady-state Kalman filter exists, deviations
between true values and projections are stationary

• Existence of steady state Kalman filter ensured by
“detectability” and “stabilizability”

⇒ Generic indeterminacy

Key element of our setup

Central bank cannot observe information set driving
public’s forward-looking decisions



KEY LESSONS FROM OUR PAPER

Informational frictions can give room for
non-fundamental shocks to drive outcomes

Determinacy conditions
depend on information structure

Consistency of beliefs between agents
places bound on non-fundamental fluctuations



EXTENSIONS
Fur future work

• Empirical work: Orphanides (2001) meets Lubik &
Schorfheide (2004)

• Revisit optimal policy problem

• . . . and implementation of desired equilibrium

• Equilibrium selection


