We consider a multivariate unobserved component time series model to disentangle the short-term and medium-term cycle for the G7 countries and the Netherlands using four key macroeconomic and financial time series. The novel aspect of our approach is that we simultaneously decompose the short-term and medium-term dynamics of these variables by means of a combination of their estimated cycles. Our results show that the cyclical movements of credit volumes and house prices are mostly driven by the medium-term cycle, while the macroeconomic variables are equally driven by the short-term and medium-term cycle. For most countries, the co-movement between the cycles of the financial and macroeconomic variables is mainly present in the medium-term. First, we find strong co-cyclicality between the medium-term cycles of house prices and GDP in all countries we analyzed. Second, the relation between the medium-term cycles of GDP and credit is more complex. We find strong concordance between both cycles in only three countries. However, in three other countries we find ˜indirect concordance, i.e. the medium-term cycles of credit and house prices share co-cyclicality, while in turn the medium-term cycles of house prices and GDP share commonality. This outcome might indicate that the house price cycle is “at least partly“ driven by the credit cycle. Lastly, the cross-country concordance of both the short-term cycles and the medium-term cycles of GDP, house prices and credit is low. Hence, the bulk of the cyclical movements seem to be driven by domestic rather than global factors.
Keywords: unobserved component time series model, Kalman filter, maximum likelihood estimation, short-term and medium-term cycles.
JEL classifications: C32, E32, G01.
Working paper no. 573
Modeling the business and financial cycle in a multivariate structural time series model
Working Papers
Gepubliceerd: 19 oktober 2017
Door: Jasper de Winter Siem Jan Koopman Irma Hindrayanto Anjali Chouhan
573 - Modeling the business and financial cycle in a multivariate structural time series model
1,7MB PDF
Ontdek gerelateerde artikelen
DNB maakt gebruik van cookies
Om de gebruiksvriendelijkheid van onze website te optimaliseren, maken wij gebruik van cookies.
Lees meer over de cookies die wij gebruiken en de gegevens die we daarmee verzamelen in onze cookie-policy.