Adaptive learning and survey data
Gepubliceerd: 27 januari 2014
This paper investigates the ability of the adaptive learning approach to replicate the expectations of professional forecasters. For a range of macroeconomic and financial variables, we compare constant and decreasing gain learning models to simple, yet powerful benchmark models. We find that constant gain models provide a better fit for the expectations of professional forecasters. For macroeconomic series they usually perform significantly better than a naïve random walk forecast. In contrast, we find it difficult to beat the no-change benchmark using the adaptive learning models to forecast financial variables.
Keywords: expectations, survey of professional forecasters, adaptive learning, bounded rationality.
JEL Codes: E37, E44, G14, G15.
Working paper no. 411
411 - Adaptive learning and survey data
Ontdek gerelateerde artikelen
DNB maakt gebruik van cookies
Om de gebruiksvriendelijkheid van onze website te optimaliseren, maken wij gebruik van cookies.
Lees meer over de cookies die wij gebruiken en de gegevens die we daarmee verzamelen in onze cookie-policy.