This paper investigates the prediction of Value-at-Risk (VaR) using option-implied information obtained by the maximum entropy method. The maximum entropy method provides an estimate of the risk-neutral distribution based on option prices. Besides commonly used implied volatility, we obtain implied skewness, kurtosis and quantile from the estimated risk-neutral distribution. We find that using the implied volatility and implied quantile as explanatory variables significantly outperforms considered benchmarks in predicting the VaR, including the commonly used GARCH(1,1)-model. This holds for all considered VaR prediction models and VaR probability levels. Overall, a simple quantile regression model performs best for all considered VaR probability levels and forecast horizons.
Keywords: Implied Quantile, GARCH, Quantile Regression, Comparative Backtest.
JEL Classifications: C14, G17.
Working paper no. 613
Value at Risk prediction using option-implied risk measures
Working Papers
Gepubliceerd: 30 oktober 2018
Door: Kai Schindelhauer Chen Zhou
613 - Value at Risk prediction using option-implied risk measures
1,1MB PDF
Ontdek gerelateerde artikelen
DNB maakt gebruik van cookies
Om de gebruiksvriendelijkheid van onze website te optimaliseren, maken wij gebruik van cookies.
Lees meer over de cookies die wij gebruiken en de gegevens die we daarmee verzamelen in onze cookie-policy.